5,912 research outputs found

    The size-brightness correspondence:evidence for crosstalk among aligned conceptual feature dimensions

    Get PDF
    The same core set of cross-sensory correspondences connecting stimulus features across different sensory channels are observed regardless of the modality of the stimulus with which the correspondences are probed. This observation suggests that correspondences involve modality-independent representations of aligned conceptual feature dimensions, and predicts a size-brightness correspondence, in which smaller is aligned with brighter. This suggestion accommodates cross-sensory congruity effects where contrasting feature values are specified verbally rather than perceptually (e.g., where the words WHITE and BLACK interact with the classification of high and low pitch sounds). Experiment 1 brings these two issues together in assessing a conceptual basis for correspondences. The names of bright/white and dark/black substances were presented in a speeded brightness classification task in which the two alternative response keys differed in size. A size-brightness congruity effect was confirmed, with substance names classified more quickly when the relative size of the response key needing to be pressed was congruent with the brightness of the named substance (e.g., when yoghurt was classified as a bright substance by pressing the smaller of two keys). Experiment 2 assesses the proposed conceptual basis for this congruity effect by requiring the same named substances to be classified according to their edibility (with all of the bright/dark substances having been selected for their edibility/inedibility, respectively). The predicted absence of a size-brightness congruity effect, along with other aspects of the results, supports the proposed conceptual basis for correspondences and speaks against accounts in which modality-specific perceptuomotor representations are entirely responsible for correspondence-induced congruity effects

    Electronic transport through electron-doped Metal-Phthalocyanine Materials

    Full text link
    We report an insulator-metal-insulator transition in films of five metal phthalocyanines (MPc) doped with alkali atoms. Electrical conduction measurements demonstrate that increasing the alkali concentration results in the formation of a metallic state for all systems. Upon further doping, the films reenter the insulating state. Structural and Raman spectroscopy studies reveal the formation of new crystalline phases upon doping and are consistent with the phenomena originating from charge transfer between the intercalated alkali atoms and MPc, in a similar fashion to what has been so far observed only in C60. Due to the presence of a molecular spin, large exchange energy, and a two-fold orbital degeneracy in MPc, our findings are of interest in the study of controllable magnetism in molecular materials and in the investigation of new, recently predicted electronic phases.Comment: Replaced with published versio

    Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    Get PDF
    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literature as formaldehyde-releasers, data are inadequate to consider them as such beyond doubt. Several (nomenclature) mistakes and outdated information are discussed. Formaldehyde and formaldehyde allergy are reviewed: applications, exposure scenarios, legislation, patch testing problems, frequency of sensitization, relevance of positive patch test reactions, clinical pattern of allergic contact dermatitis from formaldehyde, prognosis, threshold for elicitation of allergic contact dermatitis, analytical tests to determine formaldehyde in products and frequency of exposure to formaldehyde and releasers. The frequency of contact allergy to formaldehyde is consistently higher in the USA (8-9%) than in Europe (2-3%). Patch testing with formaldehyde is problematic; the currently used 1% solution may result in both false-positive and false-negative (up to 40%) reactions. Determining the relevance of patch test reactions is often challenging. What concentration of formaldehyde is safe for sensitive patients remains unknown. Levels of 200-300 p.p.m. free formaldehyde in cosmetic products have been shown to induce dermatitis from short-term use on normal skin

    Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(111)-(7x7) surfaces: Influence of short range order on the substrate

    Full text link
    Clean Si(111)-(7{x7) surfaces, followed by air-exposure, have been investigated by reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short range (7x7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(111)-(7x7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ~ 2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(111)-(7x7) surfaces has been investigated by in-situ RHEED and STM and ex-situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550{\deg}C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [1 -1 0]Ag || [1 -1 0]Si, (111)Ag || (111)Si along with its twin [-1 1 0]Ag || [1 -1 0]Si, (111)Ag || (111)Si, as observed for epitaxial growth of Ag on Si(111) surfaces. The twins are thus rotated by a 180{\deg} rotation of the Ag unit cell about the Si [111] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(111) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.Comment: 10 figure

    Penetrating spinal injury with wooden fragments causing cauda equina syndrome: case report and literature review

    Get PDF
    Study design: Case report Objective: To report an unusual case of cauda equina syndrome following penetrating injury to the lumbar spine by wooden fragments and to stress the importance of early magnetic resonance imaging (MRI) in similar cases. Summary of background data: A 22-year-old girl accidentally landed on wooden bannister and sustained a laceration to her back. She complained of back pain but had fully intact neurological function. The laceration in her back was explored and four large wooden pieces were removed. However 72 h later, she developed cauda equina syndrome. MRI demonstrated the presence of a foreign body between second and third lumbar spinal levels following which she underwent emergency decompressive laminectomy and the removal of the multiple wooden fragments that had penetrated the dura. Results: Post-operatively motor function in her lower limbs returned to normal but she continued to require a catheter for incontinence. At review 6 months later, she was mobilising independently but the incontinence remained unchanged. Conclusion: There are no reported cases in the literature of wooden fragments penetrating the dura from the back with or without the progression to cauda equina syndrome. The need for a high degree of suspicion and an early MRI scan to localise any embedded wooden fragments that may be separate from the site of laceration is emphasized even if initial neurology is intact

    Fenites associated with carbonatite complexes : a review

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Carbonatites and alkaline-silicate rocks are the most important sources of rare earth elements (REE) and niobium (Nb), both of which are metals imperative to technological advancement and associated with high risks of supply interruption. Cooling and crystallizing carbonatitic and alkaline melts expel multiple pulses of alkali-rich aqueous fluids which metasomatize the surrounding country rocks, forming fenites during a process called fenitization. These alkalis and volatiles are original constituents of the magma that are not recorded in the carbonatite rock, and therefore fenites should not be dismissed during the description of a carbonatite system. This paper reviews the existing literature, focusing on 17 worldwide carbonatite complexes whose attributes are used to discuss the main features and processes of fenitization. Although many attempts have been made in the literature to categorize and name fenites, it is recommended that the IUGS metamorphic nomenclature be used to describe predominant mineralogy and textures. Complexing anions greatly enhance the solubility of REE and Nb in these fenitizing fluids, mobilizing them into the surrounding country rock, and precipitating REE- and Nb-enriched micro-mineral assemblages. As such, fenites have significant potential to be used as an exploration tool to find mineralized intrusions in a similar way alteration patterns are used in other ore systems, such as porphyry copper deposits. Strong trends have been identified between the presence of more complex veining textures, mineralogy and brecciation in fenites with intermediate stage Nb-enriched and later stage REE enriched magmas. However, compiling this evidence has also highlighted large gaps in the literature relating to fenitization. These need to be addressed before fenite can be used as a comprehensive and effective exploration tool.This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 689909
    corecore